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Modified Seiberg ± Witten Monopole Equations and
Their Exact Solutions
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The modified Seiberg±Witten monopole equations are presented. The equations
have analytic solutions in the whole 1 1 3 space with finite energy. The physical
meaning of the equations and solutions are discussed.

1. INTRODUCTION

Witten (1994) developed an elegant dual approach that greatly simplified

the Donaldson (1983, 1993) theory of four-manifolds. This approach starts

from the Seiberg±Witten monopole equations (Seiberg and Witten, 1994)

o
4

m 5 1

g m D m c (x) 5 o
4

m 5 1

g m ( - m 2 ieW m ) c (x) 5 0 (1)

F 1
m n (x) 5 2

i

2
c Å (x) g 1

m n c (x) (2)

where x denotes the coordinates in the 1 1 3 space, and the natural units

" 5 c 5 1 are employed.
Witten noted that in flat space the Seiberg±Witten equations admit no

L2 solutions. Seiberg±Witten monopole equations were directly generalized

to the non-Abelian case on four-manifolds (Labastida and MarinÄ o, 1995),

which also admits no L2 solutions in the flat space. However, Freund (1995)

found a simple non-L2 solution, based on a fermion moving in a U(1) Dirac

monopole field (Dirac, 1948). This solution has a singularity at the origin,
and a singular string in the monopole can be removed by the concept of a

section (Wu and Yang, 1975).
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It is reasonable to extend Freund’ s solution by considering the solution

based on a fermion moving in the smooth ’ t Hooft±Polyakov monopole

field (’ t Hooft, 1974; Polyakov, 1974; Prasad and Sommerfield, 1975). This
solution is analytic in the whole space with finite energy such that it does

not satisfy the Seiberg±Witten equations (Seiberg and Witten, 1994) and their

direct generalization (Labastida and MarinÄ o, 1995), but the modified ones.

In other words, the Seiberg±Witten equations has to be modified to be

compatible with the SU(2) monopole solution.

As pointed out by Freund (1995), the spinor in his solution satisfies the
Weyl±Dirac equation, and the spinor field constructs the Coulomb field. It

is our starting point that these important properties should be kept in the

modified equations and their solutions.

In this paper we modify the Seiberg±Witten equation (2), which is

quadratic in the spinor field, to be a linear one. Surprisingly, we find that

the modified Seiberg±Witten equations have an exact solution, analytic in
the whole 1 1 3 space with finite energy.

This paper is organized as follows. In Section 2 we review the analytic

SU(2) monopole solution, and reexpress the self-dual solution as a two-

component spinor. In Section 3, due to zero mass, the Weyl±Dirac equation

can be separated into the two-component spinor form. We sketch the calcula-
tion for the two-component spinor field moving in an analytic, self-dual,

static, and spherically symmetric SU(2) monopole field without external

source, and find that the solution is nothing but the self-dual monopole

solution in the spinor form. Thus, we modify the Seiberg±Witten equation

(2) to be linear in the spinor field. The physical meaning of the equations

and solutions is discussed in Section 4.

2. SELF-DUAL SU(2) MONOPOLE SOLUTION

Prasad and Sommerfield (1975) found the analytic SU(2) monopole

solution with finite energy. If one changes the Higgs field to the fourth

component of the gauge potential, an analytic, self-dual, static, and spherically

symmetric SU (2) monopole solution without external source can be obtained

uniquely (Hou and Hou, 1981):

W 5
rÃÙ T

er
(1 2 r f (r)), W4 5

iG(r)

e
T ? rÃ

f (r) 5
b

sinh( b r)
, H r 2 1 when r ® 0

O(e 2 b r) when r ® `
(3)

iG(r) 5 r 2 1 2 b coth( b r) , H O(r) when r ® 0

2 b when r ® `
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where e is the unit electric charge, rÃis the unit radial vector, b is a constant

with positive real part, and T are the SU(2) generators in the isospin space.

An anti-self-dual solution can be obtained by replacing G(r) with 2 G(r).
The gauge field

G m n 5 - m W n 2 - n W m 2 ie(W m W n 2 W n W m ) (4)

is self-dual such that the magnetic field Bk 5 ( ij e ijkGij/2 is equal to the

electric field 2 iEk 5 Gk4:

B(x) 5 2 iE(x) 5 B |(r)rÃ(T ? rÃ) 1 B ’ (r)(T 2 rÃ(T ? rÃ))

B|(r) 5 2
1

er2 1
b 2

e sinh2( b r)
, H 2 b 2/(3e2) when r ® 0

2 1/(er2) when r ® ` (5)

B ’ (r) 5
b

er sinh( b r)
2

b 2coth( b r)

e sinh( b r)
, H 2 b 2/(3e2) when r ® 0

O(e 2 b r) when r ® `

Note that B|(r) and B ’ (r) tend to the same constant when r goes to zero, so

that they cancel each other and B is single-valued at the origin.
Usually, there are two ways to express the gauge field B. One expression

is given in (5), where the generator T is included in the expression. Another

expression does not include the generator T, and the components B r are

written as a 3 3 1 column matrix. Choosing the spherical harmonic bases

for T,

T1 5 2 2 2 1/2(Tx 1 iTy), T0 5 Tz , T 2 1 5 2 2 1/2(Tx 2 iTy) (6)

we have

B(x) 5 2 iE(x) 5 B|(r)rÃ(t ? rÃ) 1 B ’ (r)[t 2 rÃ(t ? rÃ)] (7)

tx 5 1 2 2 2 1/2

0

2 2 1/2 2 , ty 5 1 i2 2 1/2

0

i2 2 1/2 2 , tz 5 1 0

1

0 2
It is easy to check that

Tatb 5 i o
c 5 x,y,z

e abctc (8)

where Tx , Ty , and Tz are the generators in the representation D1(SU(2)).
The self-dual monopole solution B(x) transforms according to the repre-

sentation D10(A) of the Lorentz group, where A is any Lorentz transformation.

As usually done in the twistor theory (Jackiw and Rebbi, 1996; Brown et
al., 1978; Mottola, 1978; Penrose and Rindler, 1986), the solution can be
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rewritten as a matrix form
-

s ? B(x), which transforms in the Lorentz transfor-

mation A as follows:

-
s ? B(x) ® D(1/2)0(A){

-
s ? B(A 2 1x)}D(1/2)0(A) 2 1 (9)

where
-

s is the Pauli matrix.

Multiplying
-

s ? B(x) on a unit spinor x (m)b , which transforms in the

Lorentz transformation A as

x (m)a ® o
b 5 6 1/2

D(1/2)0
ab (A) x (m)b (10)

x (1/2) 5 1 1

0 2 , x ( 2 1/2) 5 1 0

1 2 (11)

we obtain two new spinors G+(x, m), m 5 6 1/2, related to the self-dual

monopole solution B(r):

G+(x, m) t
a

[ o
b 5 6 1/2

{
-

s ? B(x)} t
ab x (m)b

5 B|(r)(
-

s ? rÃ)am(t ? rÃ) t 1 B ’ (r){(
-

s ? u Ã)am(t ? u Ã) t 1 (
-

s ? w Ã)am(t ? w Ã) t }

(12)

where a and m run over 6 1/2, the isospinor index t 5 1, 0, 2 1, and rÃ, u Ã,
and w Ãare the three unit vectors in the spherical coordinate system. We have

(
-

s ? rÃ) 5 1 cos u sin u e 2 i w

sin u ei w 2 cos u 2 , (t ? rÃ) 5 1 2 2 2 1/2 sin u e 2 i w

cos u
2 2 1/2 sin u ei w 2

(
-

s ? u Ã) 5 1 2 sin u cos u e 2 i w

cos u ei w sin u 2 , (t ? u Ã) 5 1 2 2 2 1/2 cos u e 2 i w

2 sin u
2 2 1/2 cos u ei w 2 (13)

(
-

s ? w Ã) 5 1 0 2 ie 2 i w

iei w 0 2 , (t ? w Ã) 5 1 i2 2 1/2e 2 i w

0

i2 2 1/2ei w 2
G+(x, m) is a direct product of a 2 3 1 spinor matrix and a 3 3 1

isospinor matrix, which transforms in the Lorentz transformation like a spinor:

G+(x, m) t
a ® o

b 5 6 1/2

D(1/2)0
ab (A)G+(A 2 1x, m) t

b (14)
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Note that two spinors G+(x, m) satisfy a complex conjugate relation:

G+(x, 2 1/2) t
a 5 o

b 5 6 1/2
o
1

l 5 2 1

d1/2
ab ( p )d1

t l ( p ){G+(x, 1/2) l
b}*,

(15)
di

ab( p ) 5 ( 2 1)i 1 a d a( 2 b)

where the combinative coefficients have to be included due to the similarity

transformations d j( p ) between two equivalent reprepresentations D j(SU(2))
and D j(SU(2))*.

Similarly, the anti-self-dual solution G 2 (x, m) transforms in the

Lorentz transformation:

G 2 (x, m) t
a ® o

b 5 6 1/2

D0(1/2)
ab (A)G 2 (A 2 1x, m) t

b (16)

3. SPINOR SOLUTION

Let f (x) be a spinor field with spin 1/2 and isospin 1, satisfying the

Weyl±Dirac equation (1). By making use of the g matrices

-
g 5 1 0 i

-
s

2 i
-

s 0 2 , g 4 5 1 0 1

1 0 2 , g 5 5 1 1 0

0 2 1 2
we can introduce the two-component spinor fields with isospin one:

u 6 (x) , 1

2
(1 6 g 5) c (x), c (x) 5 1 u+(x)

u 2 (x) 2 (17)

satisfying

6 i
-

s ? ( ¹ 2 ieW )u 6 (x) 5 i
-
- t

u 6 (x) 1 ieW4u
6 (x) (18)

It is due to zero mass that the Weyl±Dirac equation can be separated into

the two-component form. Since

g 1 g 2 5 g 5 g 3 g 4 5 1 1 0

0 2 1 2 g 3 g 4

u 6 (x) in (18) is the two-component spinor belonging to D(1/2)0(A) and

D0(1/2)(A), respectively:

u+(x) t
a ® o

b 5 6 1/2

D(1/2)0
ab (A)u+(A 2 1x) t

b (19)

u 2 (x) t
a ® o

b 5 6 1/2

D0(1/2)
ab (A)u 2 (A 2 1x) t

b

where a 5 6 1/2 is the spinor index and t 5 6 1 and 0 is the isospinor index.
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Twenty years ago the zero-energy spinor solutions with isospin 1 of the

Weyl±Dirac equation (1) were obtained (Mottola, 1978; Hou and Hou, 1979;

Rossi, 1982), where the spinor field moves in an analytic, self-dual, static,
and spherically symmetric SU(2) monopole field without external source.

We sketch the calculation as follows.

Equation (18) is spherically symmetric, so that the general angular

momentum J is conserved:

J 5 L 1 S 1 T, S 5
-

s /2 (20)

The two-component spinors u 6
jm(x) can be expanded with respect to the com-

mon eigenfunctions of J 2, Jz , S 2, S ? rÃ, T 2, and T ? rÃ:

u 6
jm(x) t

a 5 o
b 5 6 1/2

o
1

l 5 2 1
f 6

jmb l (r) h j
mb l (rÃ)

t
ae

2 iEt (21)

h j
mb l (rÃ) t

a 5 1 2j 1 1

4 p 2
1/2

D j
m(b 1 l )( w , u , 0)*D1/2

ab ( w , u , 0)D1
t l ( w , u , 0) (22)

where u and w are the polar and azimuthal angles of rÃ, the spinor subscript

a runs over 6 1/2, and the isospinor subscript t runs over 1, 0, and 2 1.

Expressing the spinor and the isospinor as column matrixes, respectively, we

can rewrite h j
mb l (rÃ) as a direct product of a 2 3 1 spinor matrix and a 3 3

1 isospinor matrix, satisfying

J 2 h j
mb l (rÃ) 5 j( j 1 1) h j

mb l (rÃ), S 2 h j
mb l (rÃ) 5 (3/4) h j

mb l (rÃ)

T 2 h j
mb l (rÃ) 5 2 h j

mb l (rÃ), Jz h j
mb l (rÃ) 5 m h j

mb l (rÃ) (23)

(S ? rÃ) h j
mb l (rÃ) 5 b h j

mb l (rÃ), (T ? rÃ) h j
mb l (rÃ) 5 l h j

mb l (rÃ)

It is easy to show the following formulas:

-
s ?

-
D 5 (

-
s ? rÃ) 1 -

- r
1

1

r 2 2 r 2 1(
-

s ? rÃ)K

1 i f (r)
-

s ? (rÃÙ T )

K 5
-

s ? {r Ù ( 2 i ¹ 2 r Ù T/r2)} 1 1
-

s ? (rÃÙ T ) h j
mb l (rÃ) 5 i2bAb l h j

m( 2 b)( l 1 2b)(rÃ) (24)

Ab l 5 {(9/4) 2 (b 1 l )2}1/2

K h j
mb l (rÃ) 5 K l h j

m( 2 b) l (rÃ)

K l 5 {( j 1 1/2)2 2 l 2}1/2
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Hence, equation (18) for E 5 0 becomes

1 -
- r

1
1

r 2 f 6
jmb l (r) 2 K l r

2 1f 6
jm( 2 b) l (r) 1 Ab l f (r)f 6

jm( 2 b)( l 1 2b)(r)

5 7 iG(r)2b l f 6
jmbl (r) (25)

From the convergent condition, the only analytical solutions were obtained

for j 5 1/2 (Hou and Hou, 1979):

f 2
jmb l (r) 5 0

f 1
(1/2)m(1/2)0(r) 5 2 f 1

(1/2)m( 2 1/2)0(r) 5 cm ! 2 p B|(r) (26)

f 1
(1/2)m(1/2)( 2 1)(r) 5 2 f 1

(1/2)m( 2 1/2)1(r) 5 cm2 ! p B ’ (r)

where cm is an arbitrary constant due to the linear property of (18), and B |

and B ’ were given in (5). We choose the constant cm 5 1 for convenience.

The remaining components f 1
jmb l (r) are vanishing.

In terms of the exact form of D j
mm8( a , b , g ) (Rose 1957),

D j
mm8( a , b , g ) 5 o

n

( 2 1)n{( j 1 m)! ( j 2 m)! ( j 1 m8)! ( j 2 m8)!}1/2

( j 1 m 2 n)! ( j 2 m8 2 n)! n! (n 2 m 1 m8)!

3 e 2 im a [cos( b /2)]2j 1 m 2 m8 2 2n[sin( b /2)]2n 2 m 1 m8e 2 im8 g (27)

we have

h 1/2
(1/2)(1/2)0 (rÃ) 2 h 1/2

(1/2)( 2 1/2)0(rÃ) 5 (2 p ) 2 1/2 1 cos u
sin u ei w 2 ^ (t ? rÃ)

h 1/2
( 2 1/2)(1/2)0(rÃ) 2 h 1/2

( 2 1/2)( 2 1/2)0(rÃ) 5 (2 p ) 2 1/2 1 sin u e 2 i w

2 cos u 2 ^ (t ? rÃ)

h 1/2
(1/2)(1/2)( 2 1)(rÃ) 2 h 1/2

(1/2)( 2 1/2)1(rÃ)

5 (4 p ) 2 1/2 H 1 2 sin u
cos u ei w 2 ^ (t ? u Ã) 1 (4 p ) 2 1/2 1 0

iei w 2 ^ (t ? w Ã) J (28)

h 1/2
( 2 1/2)(1/2)( 2 1)(rÃ) 2 h 1/2

( 2 1/2)( 2 1/2)1(rÃ)

5 (4 p ) 2 1/2 H 1 cos u e 2 i w

sin u 2 ^ (t ? u Ã) 1 (4 p ) 2 1/2 1 2 ie 2 i w

0 2 ^ (t ? w Ã) J
Thus, u 2

jm(x) 5 0, and u 1
(1/2)(1/2)(x) and u 1

(1/2)( 2 1/2)(x) satisfy a complex conjugate

relation like (13):
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u 1
(1/2)( 2 1/2)(x) t

a 5 o
c 5 6 1/2

o
1

l 5 2 1

d 1/2
ac ( p ) d 1

t l ( p )(u 1
(1/2)(1/2)(x) l

c)* (29)

Now, it is evident that the solution u 1
(1/2)m(x) t

a is nothing but the self-dual

monopole solution G+(x, m) t
a in the spinor form:

u 1
(1/2)m(x) t

a 5 G+(x, m) t
a 5 o

b 5 6 1/2

{
-

s ? B(x)} t
ab x (m)b (30)

where m and a 5 6 1/2, and t 5 1, 0, 2 1. A similar formula was obtained

from the supersymmetric theory (Osborn, 1979).

Now, we call (1) [or its equivalent form (18)] and (30) the modified

Seiberg±Witten monopole equations. The main change from (2) to (30) is

that the bilinear form of c in (2) becomes the linear form in (30). The gauge
group changes from an Abelian group to a non-Abelian one. The great merit

of this change is that the modified equations have analytic solutions in the

whole 1 1 3 space with finite energy. Comparing (19) with (14), we conclude

that (30) is also Lorentz covariant.

If we replace the analytic, self-dual, static, and spherically symmetric
SU(2) monopole solution without external source by the anti-self-dual one,

(30) change to

u 2
(1/2)m(x) t

a 5 G 2 (x, m) t
a (31)

4. CONCLUSION AND DISCUSSION

In summary, we have modified the Seiberg±Witten equations as

o
4

m 5 1
g m ( - m 2 ieW m ) c (x) 5 0

(32)
u 1

(1/2)m(x) t
a 5 G+(x, m) t

a 5 o
b 5 6 1/2

{
-

s ? B(x)} t
ab x (m)b

The first equation describes a spinor field with isospin one moving in an

analytic, self-dual, static, and spherically symmetric SU(2) monopole field

without external source. Due to zero mass it can be separated into the two-

component form. The second equation shows that the two-component spinor
field relates with the self-dual gauge field in the spinor form directly. This

is why the gauge field still satisfies the Yang±Mills equation without exter-

nal source.

Since the gauge field is a hedgehog solution, its integral on a closed

spherical face is
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e

4 p
3

I(I 1 1)(2I 1 1)
Tr H # B(T ? rÃ) ? dS J 5 er2B |(r) , 2 1

when r ® ` (33)

where I denotes the isospin in the space on which T acts. This is the first

Chern number of the gauge field, and the asymptotic form shows that the

total magnetic charge is 2 1/e. Furthermore,

(4 p ) 2 1Tr H # o
m n r s

e m n r s G m n G r s dS J 5 2r2{B|(r)
2 1 2B ’ (r)2} , O(r 2 2)

at r , ` (34)

On the other hand, the spinor field c jm(x) with j 5 1/2 satisfies

(4 p r2) 2 1 # c jm(x) ² (
-

s ? rÃ) c jm(x) dS

5 (4 p r2) 2 1 # c jm(x) ² (T ? rÃ) c jm(x) dS 5 0 (35)

(4 p ) 2 1 # c jm(x) ² c jm(x) dS 5 (4 p r2)[B|(r)
2 1 2B ’ (r)2] (36)

Therefore,

(16 p 2) 2 1 Tr H # o
m n r s

e m n r s G m n G r s dS J
5 (32 p 3) 2 1 # c jm(x) ² c jm(x) dS (37)

where the integrand on the left hand side of (37) is nothing but the second

Chern class.

The physical meaning of the modified Seiberg±Witten monopole equa-
tions should be further explored, and new solutions will be sought later. It

will be discussed elsewhere whether or not the modified Seiberg±Witten

equations are conformal covariant.
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